
Chapter 4

Inverse Function Theorem
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This chapter is devoted to the proof of the inverse and implicit function theorems. The
inverse function theorem is proved in Section 1 by using the contraction mapping princi-
ple. Next the implicit function theorem is deduced from the inverse function theorem in
Section 2. Section 3 is concerned with various definitions of curves, surfaces and other geo-
metric objects. The relation among these definitions are elucidated by the inverse/implicit
function theorems. Finally in Section 4 we prove the Morse Lemma.

4.1 The Inverse Function Theorem

This chapter is concerned with functions between the Euclidean spaces and the inverse
and implicit function theorems. We learned these theorems in advanced calculus but the
proofs were not emphasized. Now we fill out the gap. Adapting the notations in advanced
calculus, a point x = (x1, x2, · · · , xn) ∈ Rn is sometimes called a vector and we use |x|
instead of ‖x‖2 to denote its Euclidean norm.

All is about linearization. Recall that a real-valued function on an open interval I is
differentiable at some x0 ∈ I if there exists some a ∈ R such that

lim
x→x0

∣∣∣f(x)− f(x0)− a(x− x0)
x− x0

∣∣∣ = 0.

In fact, the value a is equal to f ′(x0), the derivative of f at x0. We can rewrite the limit
above using the little o notation:

f(x0 + z)− f(x0) = f ′(x0)z + ◦(z), as z → 0.
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Here ◦(z) denotes a quantity satisfying limz→0 ◦(z)/|z| = 0. The same situation carries
over to a real-valued function f in some open set in Rn. A function f is called differentiable
at p0 in this open set if there exists a vector a = (a1, · · · , an) such that

f(p0 + z)− f(p0) =
n∑
j=1

ajzj + ◦(z) as z → 0.

Again one can show that the vector a is uniquely given by the gradient vector of f at p0

∇f(p0) =

(
∂f

∂x1
(p0), · · · ,

∂f

∂xn
(p0)

)
.

More generally, a map F from an open set in Rn to Rm is called differentiable at a point
p0 in this open set if each component of F = (f 1, · · · , fm) is differentiable. We can write
the differentiability condition collectively in the following form

F (p0 + z)− F (p0) = DF (p0)z + o(z), (4.1)

where DF (p0) is the linear map from Rn to Rm given by

(DF (p0)z)i =
n∑
j=1

aij(p0)xj, i = 1, · · · ,m,

where
(
aij
)

=
(
∂f i/∂xj

)
is the Jabocian matrix of f . (4.1) shows near p0, that is, when

z is small, the function F is well-approximated by the linear map DF (p0) up to the
constant F (p0) as long as DF (p0) is nonsingular. It suggests that the local information
of a map at a differentiable point could be retrieved from its a linear map, which is
much easier to analyse. This principle, called linearization, is widely used in analysis.
The inverse function theorem is a typical result of linearization. It asserts that a map is
locally invertible if its linearization is invertible. Therefore, local bijectivity of the map is
ensured by the invertibility of its linearization. When DF (p0) is not invertible, the first
term on the right hand side of (4.1) may degenerate in some or even all direction so that
DF (p0)z cannot control the error term ◦(z). In this case the local behavior of F may be
different from its linearization.

Theorem 4.1 (Inverse Function Theorem). Let F : U → Rn be a C1-map where U is
open in Rn and p0 ∈ U . Suppose that DF (p0) is invertible. There exist open sets V and
W containing p0 and F (p0) respectively such that the restriction of F on V is a bijection
onto W with a C1-inverse. Moreover, the inverse is Ck when F is Ck, 1 ≤ k ≤ ∞, in U .

Example 4.1. The inverse function theorem asserts a local invertibility. Even if the
linearization is non-singular everywhere, we cannot assert global invertibility. Let us
consider the switching between the cartesian and polar coordinates in the plane:

x = r cos θ, y = r sin θ .
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The function F : (0,∞) × (−∞,∞) → R2 given by F (r, θ) = (x, y) is a continuously
differentiable function whose Jacobian matrix is non-singular except (0, 0). However, it
is clear that F is not bijective, for instance, all points (r, θ + 2nπ), n ∈ Z, have the same
image under F .

Example 4.2. An exceptional case is dimension one where a global result is available.
Indeed, in MATH2060 we learned that if f is continuously differentiable on (a, b) with
non-vanishing f ′, it is either strictly increasing or decreasing so that its global inverse
exists and is again continuously differentiable.

Example 4.3. Consider the map F : R2 → R2 given by F (x, y) = (x2, y). Its Jacobian
matrix is singular at (0, 0). In fact, for any point (a, b), a > 0, F (±

√
a, b) = (a, b). We

cannot find any open set, no matter how small is, at (0, 0) so that F is injective. On the
other hand, the map H(x, y) = (x3, y) is bijective with inverse given by J(x, y) = (x1/3, y).
However, as the non-degeneracy condition does not hold at (0, 0) so it is not differentiable
there. In these cases the Jacobian matrix is singular, so the nondegeneracy condition does
not hold. We will see that in order the inverse map to be differentiable, the nondegeneracy
condition must hold.

A map from some open set in Rn to Rm is Ck, 1 ≤ k ≤ ∞ if all its components belong
to Ck. It is called a C∞-map or a smooth map if its components are C∞.

The condition that DF (p0) is invertible, or equivalently the non-vanishing of the
determinant of the Jacobian matrix, is called the nondegeneracy condition. Without
this condition, the map may or may not be local invertible, see the examples below.
Nevertheless, it is necessary for the differentiability of the local inverse. At this point, let
us recall the general chain rule.

Let G : Rn → Rm and F : Rm → Rl be C1 and their composition H = F ◦ G :
Rn → Rl is also C1. We compute the first partial derivatives of H in terms of the partial
derivatives of F and G. Letting G = (g1, · · · , gm), F = (f1, · · · , fl) and H = (h1, · · · , hl).
From

hk(x1, · · · , xn) = fk(g1(x), · · · , gm(x)), k = 1, · · · , l,

we have
∂hk
∂yi

=
n∑
i=1

∂fk
∂xi

∂gi
∂xj

.

Writing it in matrix form we have

DF (G(x))DG(x) = DH(x).

For, when the inverse is differentiable, we may apply this chain rule to differentiate
the relation F−1(F (x)) = x to obtain

DF−1(q0) DF (p0) = I , q0 = F (p0),
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where I is the identity map. We conclude that

DF−1(q0) =
(
DF (p0)

)−1
,

in other words, the matrix of the derivative of the inverse map is precisely the inverse
matric of the derivative of the map. So when the inverse map is C1, DF (p0) must be
invertible.

Lemma 4.2. Let L be a linear map from Rn to itself given by

(Lz)i =
n∑
j=1

aijzj, i = 1, · · ·n.

Then
|Lz| ≤ ‖L‖ |z|, ∀z ∈ Rn,

where ‖L‖ =
√∑

i,j a
2
ij.

Proof. By Cauchy-Schwarz inequality,

|Lz|2 =
∑
i

(Lz)2i

=
∑
i

(∑
j

aijzj
)2

≤
∑
i

(∑
j

a2ij
)(∑

j

z2j
)

= ‖L‖2 |z|2 .

Now we prove Theorem 4.1. We may take p0 = F (p0) = 0, for otherwise we could look at
the new function F (x) = F (x+p0)−F (p0) instead of F (x), after noting DF (0) = DF (p0).
First we would like to show that there is a unique solution for the equation F (x) = y
for y near 0. We will use the contraction mapping principle to achieve our goal. After a
further restriction on the size of U , we may assume that F is C1 with DF (x) invertible
at all x ∈ U . For a fixed y, define the map in U by

T (x) = L−1 (Lx− F (x) + y)

where L = DF (0). It is clear that any fixed point of T is a solution to F (x) = y. By the
lemma,

|T (x)| 6 ‖L−1‖ |F (x)− Lx− y|
6 ‖L−1| (|F (x)− Lx|+ |y|)

≤ ‖L−1‖
(∣∣∣∣ˆ 1

0

(DF (tx)−DF (0))dt x

∣∣∣∣+ |y|
)
,
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where we have used the formula

F (x)−DF (0)x =

ˆ 1

0

d

dt
F (tx)dt−DF (0) =

ˆ 1

0

(
DF (tx)−DF (0)

)
dt x,

after using the chain rule to get

d

dt
F (tx) = DF (tx) · x.

By the continuity of DF at 0, we can find a small ρ0 such that

‖L−1‖‖DF (x)−DF (0)‖ ≤ 1

2
, ∀x, |x| ≤ ρ0. (4.2)

Then for for each y in BR(0), where R is chosen to satisfy ‖L−1‖R ≤ ρ0/2, we have

|T (x)| ≤ ‖L−1‖
(ˆ 1

0

‖(DF (tx)−DF (0))dt‖|x|+ |y|
)

≤ 1

2
|x|+ ‖L−1‖|y|

≤ 1

2
ρ0 +

1

2
ρ0 = ρ0,

for all x ∈ Bρ0(0). We conclude that T maps Bρ0(0) to itself. Moreover, for x1, x2 in
Bρ0(0), we have

|T (x2)− T (x1)| =
∣∣L−1 (F (x2)− Lx2 − y)− L−1 (F (x1)− Lx1 − y)

∣∣
6 ‖L−1 ‖ |F (x2)− F (x1)−DF (0)(x2 − x1)|

6 ‖L−1‖
∣∣∣∣ˆ 1

0

DF (x1 + t(x2 − x1)) (x2 − x1)dt−DF (0)(x2 − x1)
∣∣∣∣ ,

where we have used

F (x2)− F (x1) =

ˆ 1

0

d

dt
F (x1 + t(x2 − x1))dt

=

ˆ 1

0

DF (x1 + t(x2 − x1))(x2 − x1)dt.

Consequently,

|T (x2)− T (x1)| ≤
1

2
|x2 − x1|.

We have shown that T : Bρ0(0) → Bρ0(0) is a contraction. By the contraction mapping
principle, there is a unique fixed point for T , in other words, for each y in the ball BR(0)
there is a unique point x in Bρ0(0) solving F (x) = y. Defining G : BR(0)→ Bρ0(0) ⊂ X
by setting G(y) = x, G is inverse to F .
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Next, we claim that G is continuous. In fact, for G(yi) = xi, i = 1, 2, (not to be mixed
up with the xi above),

|G(y2)−G(y1)| = |x2 − x1|
= |T (x2)− T (x1)|
≤ ‖L−1‖ (|F (x2)− F (x1)− L(x2 − x1)|+ |y2 − y1|)

≤ ‖L−1‖
(∣∣∣∣ˆ 1

0

(
DF ((1− t)x1 + tx2)−DF (0)

)
dt(x2 − x1)

∣∣∣∣+ |y2 − y1|
)

≤ 1

2
|x2 − x1|+ ‖L−1‖|y2 − y1|

=
1

2
|G(y2)−G(y1)|+ ‖L−1‖|y2 − y1|,

where (4.2) has been used. We deduce

|G(y2)−G(y1)| 6 2‖L−1‖|y2 − y1| , (4.3)

that’s, G is continuous on BR(0).

Finally, let’s show that G is a C1-map in BR(0). In fact, for y1, y1 + y in BR(0), using

y = F (G(y1 + y))− F (G(y1))

=

ˆ 1

0

DF (G(y1) + t(G(y1 + y)−G(y1))dt (G(y1 + y)−G(y1)),

we have
G(y1 + y)−G(y1) = DF−1(G(y1))y +R,

where R is given by

DF−1(G(y1))

ˆ 1

0

(
DF (G(y1))−DF (G(y1) + t(G(y1 + y)−G(y1))

)
(G(y1 + y)−G(y1))dt.

As G is continuous and F is C1, we have

G(y1 + y)−G(y1)−DF−1(G(y1))y = ◦(1)(G(y1 + y)−G(y1))

for small y. Using (4.3), we see that

G(y1 + y)−G(y1)−DF−1(G(y1))y = ◦(‖y‖) ,

as ‖y‖ → 0. We conclude that G is differentiable with derivative equal to DF−1(G(y1)).

After we have proved the differentiability of G, from the formula DF (G(y))DG(y) = I
where I is the identity matrix we see that

DF−1(y) = (DF (F−1(y)))−1, ∀y ∈ BR(0).
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From linear algebra we know that DF−1(y) can be expressed as a rational function of
the entries of the matrix of DF (F−1(y). Consequently, F−1 is Ck in y if F is Ck in x for
1 ≤ k ≤ ∞.

The proof of the inverse function theorem is completed by taking W = BR(0) and
V = F−1(W ).

Remark 4.1. It is worthwhile to keep tracking and see how ρ0 and R are determined.
Indeed, let

MDF (ρ) = sup
x∈Bρ(0)

‖DF (x)−DF (0)‖

be the modules of continuity of DF at 0. We have MDF (ρ) ↓ 0 as ρ→ 0. From this proof
we see that ρ0 and R can be chosen as

MDF (ρ0) ≤
1

2‖L−1‖
, and R ≤ ρ0

2‖L−1‖
.

Example 4.4. Consider the system of equations{
x− y2 = a,
x2 + y + y3 = b.

We know that x = y = 0 is a solution when (a, b) = (a, b). Can we find the range of
(a, b) so that this system is solvable? Well, let F (x, y) = (x − y2, x2 + y + y3). We have
F (0, 0) = (0, 0) and DF is given by the matrix 1 −2y

2x 1 + 3y2

 ,

which is nonsingular at (0, 0). In fact the inverse matrix of DF ((0, 0)) is given by the
identity matrix, hence ‖L−1‖ = 1 in this case. According to Remark 4.1 a good ρ0 could
be found by solving MDF (ρ0) = 1/2. We have ‖DF ((x, y))−DF ((0, 0))‖ = 4y2+4x2+9y2,
which, in terms of the polar coordinates, is equal to 4r2+9 sin4 θ. Hence the maximal value
is given by 4r2 +9r4, and so ρ0 could be chosen to be any point satisfying 4ρ20 +9ρ40 ≤ 1/2.
A simple choice is ρ0 =

√
1/26. Then R is given by

√
26/52. We conclude that whenever

a, b satisfy a2 + b2 ≤ 1/104, this system is uniquely solvable in the ball Bρ0((0, 0)).

Example 4.5. Determine all points where the function F (x, y) = (xy2 − sin πx, y2 −
25x2 + 1) has a local inverse and find the partial derivatives of the inverse. Well, the
Jacobian matrix of F is given by

 y2 − π cos πx 2xy

−50x 2y

 .
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Hence, F admits a local inverse at points (x, y) satisfying

2y(y2 − π cosπx) + 100x2y 6= 0 .

Derivatives of the inverse function, denoted by G = (g1, g2), can be obtained by implicit
differentiation of the relation

(u, v) = F (G(u, v)) = (g1g
2
2 − sin πg1, g

2
2 − 25g21 + 1),

where g1, g2 are functions of (u, v). We have

∂g1
∂u

g22 + 2g1g2
∂g2
∂u
− π cos πg1

∂g1
∂u

= 1,

2g2
∂g2
∂u
− 50g1

∂g1
∂u

= 0,

∂g1
∂v

g22 + 2g1g2
∂g2
∂v
− π cos πg1

∂g1
∂v

= 0,

2g2
∂g2
∂v
− 50g1

∂g1
∂v

= 1.

The first and the second equations form a linear system for ∂gi/∂u, i = 1, 2, and the third
and the fourth equations form a linear system for ∂gi/∂v, i = 1, 2. By solving it (the
solvability is ensured by the invertibility of the Jacobian matrix) we obtain the partial
derivatives of the inverse function G. Nevertheless, it is too tedious to carry it out here.
An alternative way is to find the inverse matrix of the Jacobian DF . In principle we could
obtain all partial derivatives of G by implicit differentiation and solving linear systems.

We end this section by rephrasing the inverse function theorem.

A Ck-map F between open sets V and W is a “Ck-diffeomorphism” if F−1 exists and is
also Ck. Let f1, f2, · · · , fn be Ck-functions defined in some open set in Rn whose Jacobian
matrix of the map F = (f1, · · · , fn) is non-singular at some point p0 in this open set. By
Theorem 4.1 F is a Ck-diffeomorphism between some open sets V and W containing p0
and F (p0) respectively. To every function Φ defined in W , there corresponds a function
defined in V given by Ψ(x) = Φ(F (x)), and the converse situation holds. Thus every
Ck-diffeomorphism gives rise to a “local change of coordinates”.

4.2 The Implicit Function Theorem

Next we deduce the implicit function theorem from the inverse function theorem.

Theorem 4.3 (Implicit Function Theorem). Consider C1-map F : U → Rm where
U is an open set in Rn × Rm. Suppose that (p0, q0) ∈ U satisfies F (p0, q0) = 0 and
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DyF (p0, q0) is invertible in Rm. There exist an open set V1 × V2 in U containing (p0, q0)
and a C1-map ϕ : V1 → V2, ϕ(p0) = q0, such that

F (x, ϕ(x)) = 0 , ∀x ∈ V1 .

The map ϕ belongs to Ck when F is Ck, 1 ≤ k ≤ ∞, in U . Moreover, if ψ is another
C1-map in some open set containing p0 to V2 satisfying F (x, ψ(x)) = 0 and ψ(p0) = q0,
then ψ coincides with ϕ in their common set of definition.

The notation DyF (p0, q0) stands for the linear map associated to the Jocabian matrix
(∂Fi/∂yj(p0, q0))i,j=1,··· ,m where p0 is fixed.

Proof. Consider Φ : U → Rn ×Rm given by

Φ(x, y) = (x, F (x, y)).

It is evident that DΦ(x, y) is invertible in Rn × Rm when DyF (x, y) is invertible in Rm.
By the inverse function theorem, there exists a C1-inverse Ψ = (Ψ1,Ψ2) from some open
W in Rn × Rm containing (p0, 0) to an open subset of U . By restricting W further we
may assume Ψ(W ) is of the form V1 × V2. For every (x, z) ∈ W , we have

Φ(Ψ1(x, z),Ψ2(x, z)) = (x, z),

which, in view of the definition of Φ, yields

Ψ1(x, z) = x, and F ((Ψ1(x, z),Ψ2(x, z)) = z.

In other words, F (x,Ψ2(x, z)) = z holds. In particular, taking z = 0 gives

F (x,Ψ2(x, 0)) = 0, ∀x ∈ V1 ,

so the function ϕ(x) ≡ Ψ2(x, 0) satisfies our requirement.

By restricting V1 and V2 further if necessary, we may assume the matrix

ˆ 1

0

DyF (x, y1 + t(y2 − y1)dt

is nonsingular for (x, y1), (x, y2) ∈ V1 × V2. Now, suppose ψ is a C1-map defined near x0
satisfying ψ(p0) = q0 and F (x, ψ(x)) = 0. We have

0 = F (x, ψ(x))− F (x, ϕ(x))

=

ˆ 1

0

DyF (x, ϕ(x) + t(ψ(x)− ϕ(x))dt(ψ(x)− ϕ(x)),

for all x in the common open set they are defined. This identity forces that ψ coincides
with ϕ in this open set. The proof of the implicit function is completed, once we observe
that the regularity of ϕ follows from the inverse function theorem.
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Example 4.6. Let F : R5 → R2 be given by F (x, y, z, u, v) = (xy2 + xzu + yv2 −
3, u3yz + 2xv − u2v2 − 2). We have F (1, 1, 1, 1, 1) = (0, 0). Show that there are functions
f(x, y, z), g(x, y, z) satisfying f(1, 1, 1) = g(1, 1, 1) = 1 and F (x, y, z, f(x, y, z), g(x, y, z)) =
(0, 0) for (x, y, z) near (1, 1, 1). We compute the “partial” Jacobian matrix of F in (u, v): xz 2yv

3u2yz − 2uv2 2x− 2u2v

 .

Its determinant at (1, 1, 1, 1, 1) is equal to −2, so we can apply the implicit function
theorem to get the desired result. The partial derivatives of f and g can be obtained
by implicit differentiations. For instance, to find ∂f/∂y and ∂g/∂y we differentiate the
relation

(xy2 + xzf + yg2 − 3, f 3yz + 2xg − f 2g2 − 2) = (0, 0)

to get

2xy + xz
∂f

∂y
+ g2 + 2yg

∂g

∂y
= 0,

and

f 3z + 3f 2yz
∂f

∂y
+ 2x

∂g

∂y
− 2fg2

∂f

∂y
− 2f 2g

∂g

∂y
= 0.

By solving this linear system we can express ∂f/∂y and ∂g/∂y in terms of x, y, z, f and
g. Similarly we can do it for the other partial derivatives.

It is interesting to note that the inverse function theorem can be deduced from the
implicit function theorem. Thus they are equivalent. To see this, keeping the notations
used in Theorem 4.1. Define a map F̃ : U × Rn → Rn by

F̃ (x, y) = F (x)− y.

Then F̃ (p0, q0) = 0, q0 = F (p0), and DF̃ (p0, q0) is invertible. By Theorem 4.3, there exists

a C1-function ϕ from near q0 satisfying ϕ(q0) = p0 and F̃ (ϕ(y), y) = F (ϕ(y)) − y = 0,
hence ϕ is the local inverse of F .

4.3 Curves and Surfaces

A parametric curve is a C1-map γ from an interval I to R2 which satisfies |γ′| 6= 0 on
I. In this definition a curve is not a geometric object but a map. The condition |γ′| 6= 0
ensures that the curve does not collapse into a point. A parametric curve becomes a
geometric curve only if we look at its image. On the other hand, a non-parametric
curve is a subset Γ in R2 satisfies the following condition: For each p0 = (x0, y0) ∈ Γ,
there exist an open rectangle R = (x1, x2)×(y1, y2) containing p0 such that either for some
C1-function f from (x1, x2) to (y1, y2) such that Γ∩R = {(x, f(x)) : x ∈ (x1, x2)}, or for
some C1-function g from (y1, y2) to (x1, x2) such that Γ ∩ R = {(g(y), y) : y ∈ (y1, y2)}.
In the following we show the essential equivalence of these two definitions.
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Proposition 4.4. (a). Let γ : (t1, t2)→ R2 be a parametric curve. For each t0 ∈ (t1, t2),
there exists (t′1, t

′
2) ⊂ (t1, t2) containing t0 such that Γ1 = {γ(t) ∈ R2 : t ∈ (t′1, t

′
2)} is a

non-parametric curve.

(b). Let Γ be a non-parametric curve in R2 and p0 be a point on it. There exist some
open set G containing p0 and a parametric curve from some open interval to G whose
image coincides with Γ ∩G.

Proof. (a). Let γ = (γ1, γ2) be a parametric curve from (t1, t2) to R2 and p0 = γ(t0), t0 ∈
(t1, t2), a point on its image Γ. From the condition |γ′(t)| 6= 0, ∀t ∈ (t1, t2), we assume
γ′1(t0) 6= 0 first. By the inverse function theorem, we can find a subinterval (t′1, t

′
2) of

(t1, t2) containing t0 and some (x1, x2) containing γ1(t0) such that γ1 : (t′1, t
′
2) → (x1, x2)

is invertible. Denoting the inverse function by τ . We have

Γ ∩G = {γ(t) : t ∈ (t′1, t
′
2)} = {(x, f(x)) : x ∈ (x1, x2)},

where G = (x1, x2) × (−∞,∞) and f(x) = γ2(τ(x)) is a C1-function. We have proved
that the image of γ is a non-parametric curve locally. If instead γ′2(t0) 6= 0, a similar
argument shows that Γ is a locally a graph over y instead of a graph over x.

(b). Let Γ be a non-parametric curve. According to the definition and because it is always
possible to find an open rectangle containing p0 in G, there are some R = (x1, x2)×(y1, y2)
containing p0 and, say, a C1-function f : (x1, x2) → (y1, y2) such that Γ ∩ R coincides
with {(x, f(x) : x ∈ (x1, x2)}. But then the parametric curve γ : (x1, x2) → R2 given
by γ(t) = (t, f(t)) satisfies our requirement. The case when g exists instead of f can be
handled similarly. Hence every non-parametric curve is the image of a parametric curve
locally.

Example 4.7. In the statement of Proposition 4.4, we need to restrict to a smaller interval
(t′1, t

′
2). To explain its necessity image a parametric curve γ1 defined on (0,1) that, after

passing a point p0 = γ1(t1) at time t1, returns to hit it at some instance t2 transversally.
Therefore, near p0 the image of γ1 cannot be the graph of a single function no matter it
is over the x- or the y-axis. It is possible only if we restrict to a small interval containing
t1 or t2.

Example 4.8. Even if there is no self-intersection in the image, we still need to re-
strict (t′1, t

′
2) for another reason. For instance, consider the parametric curve γ2(t) =

et(cos t, sin t), t ∈ (0,∞). The image is a spiral starting at the point (1, 0) that coiling
around the origin infinitely many times. It never intersects itself and eventually goes
to infinity. No matter it is over an interval in the x- or the y-axis, the image consists
infinitely many layers of graphs. Only if we restrict to some suitable (t′1, t

′
2) do we have a

non-parametric curve.

Example 4.9. A parametric curve can be defined in any interval. In order to compare
it with non-parametric curves, we have restricted to open intervals. A parametric curve
γ : [a, b] → R2 is called a closed curve or a loop if their endpoints coincides with equal
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derivative, that is, γ(a) = γ(b) and γ′(a) = γ′(b). When this happens, we can extend this
curve as a periodic function in (−∞,∞) with period b − a. It follows that Proposition
4.1 applies to closed curves as well.

Example 4.10. While locally a non-parametric curve arises from a parametric curve and
vice versa. The global property may be different. Let us use a simple example to illustrate
this point. Consider the unit circle c : [0, 4π] → R2 given by c(θ) = (cos θ, sin θ). While
the image is the unit circle, as t runs from 0 to 4π, the unit circle is transversed twice. If
we calculate the length of the circle using the formula

L(c) =

ˆ 4π

0

√
ċ21 + ċ22 dt,

we will get L(c) = 4π instead of 2π, the “geometric” length of the circle.

Next we consider surfaces in space. A map σ : (s1, s2) × (t1, t2)× → R3 is called a
parametric surface if σ = (σ1, σ2, σ3) is continuously differentiable and the vectors(∂σ1

∂s
,
∂σ2
∂s

,
∂σ3
∂s

)
and

(∂σ1
∂t

,
∂σ2
∂t

,
∂σ3
∂t

)
are linear independent at every point in (s1, s2) × (t1, t2). The linear independence re-
quirement ensures that the image does not collapse into a point, a curve or something of
dimension less than 2. A non-parametric surface is a subset Σ in R3 satisfying: For
each p0 ∈ Σ, there exists an open rectangular box B = (x1, x2) × (y1, y2) × (x3, y3) con-
taining p0 and either there exists a C1-function f : (x1, x2)× (y1, y2)→ (z1, z2) satisfying

Σ ∩B =
{

(x, y, f(x, y)) : (x, y) ∈ (x1, x2)× (y1, y2)
}
,

or there exists a C1-function g : (y1, y2)× (z1, z2)→ (x1, x2) satisfying

Σ ∩B =
{

(g(y, z), y, z) : (y, z) ∈ (y1, y2)× (z1, z2)
}
,

or there exists a C1-function h : (x1, x2)× (z1, z2)→ (y1, y2) satisfying

Σ ∩B =
{

(x, h(x, z), z) : (x, z) ∈ (x1, x2)× (z1, z2)
}
.

Parallel to the case of curves, we have

Proposition 4.5. (a). Let σ : (s1, s2) × (t1, t2) → R3 be a parametric surface and Σ
its image. For each p0 = (s0, t0) in Σ, there exists some open set G ⊂ (s1, s2) × (t1, t2)
containing (s0, t0) so that Σ1 = {σ(s, t) : (s, t) ∈ G} is a non-parametric surface.

(b). Let Σ be a non-parametric surface in R3 and p0 ∈ Σ. There exist some open
rectangular box B containing p0 such that Σ ∩B is the image of a parametric surface.
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Proof. (a). By assumption the matrix formed by the two vectors (∂σ1/∂s, ∂σ2/∂s, ∂σ3/∂s)
and (∂σ1/∂t, ∂σ2/∂t, ∂σ3/∂t) are of rank 2. From linear algebra, we know that the three
column vectors (

∂σ1
∂s

,
∂σ1
∂t

)
,

(
∂σ2
∂s

,
∂σ2
∂t

)
,

(
∂σ3
∂s

,
∂σ3
∂t

)
span R2. We can pick two independent vectors among these them. Assuming that it is
the first two at the point (s0, t0), the matrix


∂σ1
∂s

∂σ2
∂s

∂σ1
∂t

∂σ2
∂t


is nonsingular at (s0, t0) and we can appeal to the inverse function theorem to conclude
that the map (s, t) 7→ (σ1(s, t), σ2(s, t)) from some open G in (s1, s2)× (t1, t2) containing
(s0, t0) onto some open rectangle R = (x1, x2) × (y1, y2) has a C1-inverse Φ. It follows
that

Σ1 ≡ {σ(s, t) : (s, t) ∈ G} = {(x, y, f(x, y)) : (x, y) ∈ R},

where f(x, y) = σ3(Φ(x, y) is a non-parametric surface in the rectangular boxR×(−∞,∞).

(b). Let Σ be a non-parametric surface and p0 a point on Σ. There exists a rectangular
box B = (x1, x2)×(y1, y2)×(z1, z2) and a function, say, f from (x1, x2)×(y1, y2) to (z1, z2)
such that

Σ ∩B = {(x, y, f(x, y)) : (x, y) ∈ (x1, x2)× (y1, y2)}.

It is clear that Σ ∩ B is the image of the parametric surface (x, y) 7→ (x, y, f(x, y)). The
other cases are similar.

Example 4.11. Consider the set given by σ : (θ, z)→ R3 given by

σ(θ, z) = (a cos θ, a sin θ, z),

where a is a non-negative number. We have(∂σ1
∂θ

,
∂σ2
∂θ

,
∂σ3
∂θ

)
= (−a sin θ, a cos θ, 0)

and (∂σ1
∂z

,
∂σ2
∂z

,
∂σ3
∂z

)
= (0, 0, 1),

which are linearly independent for a > 0, so Σ defines a non-parametric surface according
to Proposition 4.2. However, when a = 0, the first vector becomes (0, 0, 0) and Proposition
4.2 cannot apply. In fact, the map σ degenerates into the z-axis.
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To generalize, a parametric hypersurface is a map σ from
∏n−1

j=1 (t1j , t
2
j)→ Rn such

that the (n− 1)-vectors in Rn(
∂σ1
∂tj

, · · · , ∂σn
∂tj

)
, j = 1, · · · , n− 1,

are linearly independent at every point (t1, · · · , tn−1). A non-parametric hypersurface
is a set Σ in Rn such that for each p0 in Σ, there exist an open rectangular box B =∏n

j=1(x
1
j , x

2
j) containing p0 and a function f from

∏n
j=1,j 6=k(x

1
j , x

2
j) to (x1k, x

2
k) such that

Σ ∩ B coincides with {(x1, · · · , f(x′), · · · , xn) where xk is replaced by f(x′) and x′ =
(x1, · · · , xn) with xk deleted.

Proposition 4.6. (a). Let σ :
∏n−1

j=1 (t1j , t
2
j)→ Rn be a parametric hypersurface and Σ its

image. For each p0 = σ(t0) in Σ, there exists some open set G ⊂
∏n−1

j=1 (t1j , t
2
j) containing

t0 so that Σ1 = {σ(t) : t ∈ G} is a non-parametric hypersurface.

(b). Let Σ be a non-parametric hypersurface in Rn and p0 ∈ Σ. There exist some open
rectangular box B containing p0 such that Σ∩B is the image of a parametric hypersurface.

The proof of this proposition is similar to that of the previous proposition and is
omitted.

Another useful way to describe a hypersurface is to express it as the zero set or locus
of some function. For instance, a non-parametric curve in R2 may be described as the set
{(x, y) : f(x, y) = 0} for some function f and a non-parametric surface in R3 may be
described as the set {(x, y, z) : g(x, y, z) = 0} for some function g and etc. In general, by
the implicit function theorem we have

Proposition 4.7. Let f be a continuously differentiable function defined on some open
set G in Rn and Z its zero set, which is assumed to be nonempty. Let p0 = (x01, · · · , x0n)
be a point on Z such that ∇f(p0) 6= (0, · · · , 0). If ∂f/∂xn(p0) 6= 0, say, there exist an
open rectangular box B containing (x01, · · · , x0n−1), a C1-function ϕ : B → G and an open
set G1 ⊂ G such that

Z ∩G1 =
{(
x1, · · · , xn−1, ϕ(x1, · · · , xn−1)

)
: (x1, · · · , xn−1) ∈ B

}
.

In particular, Z ∩G1 is a non-parametric hypersurface.

Example 4.12. In summarizing, we note there are three ways of description of the
unit circle centered at the origin. First, it could be described as a parametric curve
γ(t) = (cos t, sin t), t ∈ [0, 2π]. Next, it is a non-parametric curve described either as
the set {(x,±

√
1− x2) or {(±

√
1− y2, y). Finally, it is the zero set of the function

f(x, y) = x2 + y2 − 1.

The last point of view, namely, to regard a hypersurface as the zero set of some
function, can be generalized to treat more other geometric objects. A parametric k-
surface is a continuously differentiable map ϕ from R = (a1, b1)× (ak, bk) to Rn, 1 ≤ k ≤



4.4. THE MORSE LEMMA 15

n− 1, where the matrix (∂ϕi/∂tj)k×n has rank k everywhere. A parametric k-surface is a
parametric curve when k = 1 and a hypersurface when k = n−1. While a non-parametric
description of these k-surfaces for k, 1 < k < n−1, is tedious and not so useful, expressing
them as the common zero set of several functions is much better. The following result is
again a consequence of the implicit function theorem.

Proposition 4.8. Let ϕ : R → Rn be a parametric k-surface and Φ be its image in Rn.
For each p0 ∈ Φ, there exist an open set G containing p0 and C1-functions f1, · · · , fn−k,
defined on G such that

Φ ∩G =
{
x ∈ Rn : fj(x) = 0, j = 1, · · · , n− k

}
.

4.4 The Morse Lemma

We present a further application of the inverse function theorem. A twice continuously
differentiable function or a C2-function for short is a real-valued function whose second
partial derivatives are continuous. Let f be a C2-function defined in some open set in Rn.
We will use

(
hij
)
i,j=1,··· ,n to denote its Hessian matrix, that is,

hij =
∂2f

∂xi∂xj
.

By Taylor’s expansion theorem, we have

f(x)− f(p0) =
n∑
i=1

∂f

∂xi
(p0)(xi − pi) +

n∑
i,j=1

hij(x0)(xi − pi)(xj − pj) + ◦(|x− p0|2).

When p0 is a critical point of f , the first term on the right hand side vanishes so the
second order term becomes important. We call p0 a non-degenerate critical point
if the Hessian matrix is non-singular at p0. From linear algebra we know that every
symmetric matrix can be diagonalized by a rotation of axes. Henceforth in a suitable
coordinate system (hij(p0)) can be taken to be a diagonal matrix (λjδij), where λj’s are
the eigenvalues of the Hessian matrix. The number of negative eigenvalues is called the
index of the critical point. The Morse lemma asserts more can be done. It guarantees a
“normal form” of the function near a non-degenerate critical point.

Theorem 4.9 (Morse Lemma). Let f be a smooth function in some open set in Rn

and p0 be a non-degenerate critical point for f in this open set. There exists a smooth,
local change of coordinates x = Φ(y), p0 = Φ(0), such that

f̃(y) = f(Φ(y)) = −y21 − y21 − · · · − y2m + y2m+1 + · · ·+ y2n,

where m, 0 ≤ m ≤ n is the index of the critical point.
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Proof. Replacing f by f(x+x0)−f(x0) we may assume f(0) = 0 and 0 is a non-degenerate
critical point of f . Moreover, by a suitable rotation of axes, the Hessian matrix becomes
a diagonal one. In particular, ∂2f/∂x2n(0) 6= 0. By replacing f by −f when necessary, we
may assume ∂2f/∂x2n(0) > 0. We will use induction on the dimension n in the following
statement:

There is a local change of coordinates such that f assumes the form

δ1y
2
1 + δ2y

2
2 + · · ·+ δny

2
n,

where δi ∈ {1,−1}, i = 1 · · · , n.

Using the fact that a change of coordinates preserves the index of the critical point, a
consequence from linear algebra, the number the negative δj’s must equal to m.

When n = 1,

f(x) = f(0) +

ˆ 1

0

df

dt
(tx)dt

=

ˆ 1

0

f ′(tx)dt x

≡ g(x)x.

From f ′(x) = g′(x)x + g(x) we know that g(0) = 0. Repeating the argument above
to g, g(x) = h(x)x for some smooth h. Therefore, we have f(x) = h(x)x2 near 0.
From f ′′(x) = h′′(x)x2 + 2h′(x)x + 2h(x), we see that h(0) = f ′′(0)/2 > 0. By defining
Φ(x) =

√
h(x)x, Φ′(0) > 0, so by the inverse function theorem, y = Φ(x) forms a local

change of coordinates in which f̃(Φ−1(y)) ≡ f(x) = y2.

Next, assuming the statement holds for dimension n − 1, we establish it for n. Let
x = (x′, z) where x′ = (x1, · · · , xn−1). The function ϕ(x′, z) ≡ ∂f/∂xn(x′, z) satisfies
ϕ(0, 0) = 0 and ∂ϕ/∂xn(0, 0) > 0. By the implicit function theorem there exists an open
set V ×W ⊂ Rn−1×R containing (0, 0) such that ϕ(x′, h(x′)) = 0 holds for some smooth
h from V to W . Now consider the function

g(x′, z) = f(x′, z)− f(x′, h(x′)), (x′, z) ∈ V ×W.

We have g(x′, h(x′)) = 0 and ∂g/∂xn(x′, h(x′)) = ϕ(x′, h(x′)) = 0. As for each fixed
x′, ∂2g/∂x2n(x′, z) = ∂2f/∂x2n(x′, z) > 0 by shrinking V × W a little, we may assume
(x′, h(x′)) is the unique minimum for g(x′, z) in this open set, so g is non-negative. We
next claim that g can be written as the square root of some smooth function j. Indeed,
we have

g(x′, z) = g(x′, h(x′)) +

ˆ 1

0

dg

dt
(x′, h(x′) + t(z − h(x′))dt

=

ˆ 1

0

∂g

∂xn
(x′, h(x′) + t(z − h(x′))dt(z − h(x′))

≡ k(x′, z)(z − h(x′)),
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where k is smooth. By differentiating this relation, we have

∂g

∂xn
(x′, h(x′)) =

∂k

∂xn
(x′, z)(z − h(x′)) + k(x′, h(x′)), (4.4)

which shows that k(x′, h(x′)) = 0. Arguing as before, we can find a smooth function j so
that k(x′, h(x′)) = j(x′, z)(z − h(x′)). It follows that

g(x′, z) = k(x′, z)(z − h(x′)) = j(x′, z)(z − h(x′))2

holds. By the chain rule,

∂k

∂xn
=

∂j

∂xn
(z − h(x′)) + j(x′, z).

Since ∂k/∂xn(0, 0) = ∂2g/∂xn(x′, z) > 0, j(x′, z) > 0 in V ×W and hence
√
j is smooth.

We have succeeded in showing

f(x′, z) =
(√

j(z − h(x′)
)2

+ f(x′, h(x′)), ∀V ×W.

From ∂j/∂xn(0, 0) 6= 0 we may also assume T : (x′, z) 7→ (x′,
√
j(z − h(x′)) is a local

change of coordinates. Under this new coordinates,

f̃(x′, u) ≡ f(T−1(x, u)) = u2 + f(x′, h(x′)), (x′, u) ∈ V1 ×W1,

for some V1 ×W1 ⊂ V ×W containing (0, 0). Now, one can verify that 0 ∈ V1 is a non-
degenerate critical point of the function f1(x

′) ≡ f(x′, h(x′)), so by induction hypothesis,
there exists a change of coordinates from x′ to some u1, · · · , un−1 such that f1(x

′) becomes∑n−1
i=1 δiu

2
i . By composing these two local changes of coordinates, we finally obtain a local

change of coordinates (x′, z) 7→ (u1, · · · , un−1, j) so that f becomes
∑n

i=1 δiu
2
i locally. We

have completed the proof of Morse lemma.

Comments on Chapter 4. Inverse and implicit function theorems, which reduce com-
plicated structure to simpler ones via linearization, are the most frequently used tool in
the study of the local behavior of maps. We learned these theorems and some of its
applications in MATH2010 already. In view of this, we basically provide detailed proofs
here but leave out many standard applications. You may look up Fitzpatrick, Advance
Calculus, to refresh your memory. By the way, the proof in this book does not use the
contraction mapping principle. I do know a third proof besides these two.

We discuss the definition of curves, surfaces, etc in some details. Although they are
elementary and you may have learn it here or there. I believe it is worthwhile to discuss
it in a synthetic way. One step further is the definition of a manifold, which contains all
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curves, surfaces and k-surfaces. It is the object of study in modern differential geometry.
You may google to learn more.

Morse lemma, which provides the “normal form” near a non-degenerate critical point,
is the starting point of Morse theory. A smooth function defined in a manifold (take it to
be Rn for simplicity) is called a Morse function if all its critical points are non-degenerate.
Let Σc be its level set {x ∈ Rn : f(x) = c} where f is a Morse function. This theory
is mainly concerned with how the topology of Σc changes as c varies. When c0 is not a
critical value, that is ∇f(x) 6= 0, x ∈ Σc, the topology does not change for all c close to
c0. However, the topology of Σc changes when Σc contains a critical point. Therefore, the
topology of the underlying manifold can be studied via the Morse functions defined on it.
A classic on this topic is J. Milnor, Morse Theory. Look up Morse theory in Wikipedia
for more.


